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Abstract—Consider constrained-deadline sporadic tasks
scheduled on a multiprocessor where (i) each task is
characterized by its execution requirement, deadline, and
minimum inter-arrival time, (ii) each task generates a sequence
of jobs, (iii) the execution requirement of a job and its potential
for parallel execution is described by one or many stages with a
stage having one or many segments and different segments in the
same stage can execute in parallel and a segment is only allowed
to start execution if all segments of previous stages have finished
execution, and (iv) there is contention for shared resources
in the memory system (cache eviction, reordering in memory
controller, memory bus contention). We present an algorithm
that (i) performs schedulability testing for tasks scheduled
with global-Earliest-Deadline-First (gEDF), (ii) configures the
virtual-to-physical address translation so that a cache block
fetched to the last-level cache by one task cannot be evicted
by another task, (iii) configures the virtual-to-physical address
translation to attempt to eliminate the extra execution time
caused by the reordering effect in the memory controller and
if this is not possible, then the reordering effect is considered
in the schedulability analysis, and (iv) considers the effect
of contention for the memory bus. Our solution is based on
formulating this problem as a Mixed-Integer Linear Program
(MILP). We have implemented a tool based on this theory and
validated its output against measurements on a real computer.

I. INTRODUCTION

Multicore processors are the norm today. The trend is that
the number of processors on a chip increases exponentially
while the clock frequency stays constant. And software prac-
titioners are under pressure to deliver improved functionality
which has increased the execution requirements. This trend
makes it increasingly common in real-time systems that a job
has execution requirement so large that executing it sequen-
tially causes a deadline miss and hence, the only way for a job
to meet its deadline is to perform some execution in parallel.
Some software is inherently sequential, however, so a software
system typically consists of parts that can execute in parallel
and parts that cannot. This brings the challenge:

C1. Schedule software where some parts can execute
in parallel so that all deadlines are met and prove
before run-time that their deadlines are met.

Timing of software executing on a COTS multicore processor
depends not only on the processor scheduler but also on
contention for shared resources in the memory system. This
includes (i) the last-level cache shared between processors,
(ii) the row buffer in each memory bank storing the most
recently accessed row, and (iii) the memory bus (the bus
between the memory controller and DRAM memory modules).
A cache memory is typically organized as a set of cache sets
where certain bits of the physical address of a memory access

determine which cache set the memory access should use.
Hence, if the virtual-to-physical address translation is set up
so that for the physical addresses generated, it holds that no
two memory accesses of different tasks use the same cache
set, then it is guaranteed that a cache block fetched to the
cache by one task cannot be evicted by another task. Also,
DRAM memories are typically organized as a set of banks
with each bank having multiple rows and each bank having one
row buffer which stores the data of the most recently accessed
row. When a memory access experiences a miss in the shared
cache, (i) precharging is performed, that is, the data in the
row buffer is written back to its row in the memory bank and
then (ii) the memory access activates a row in a memory bank
(the memory bank is indicated by certain bits in the physical
address of the memory access and the row is indicated by other
bits) so this row is loaded in the row buffer of the memory bank
and then (iii) the memory access reads data from this buffer
and transfers the data to the processor (if the memory access is
a load) or writes data to this row buffer (if the memory access
is a store). If the row needed for a memory access is already
loaded in the row buffer, then precharge and activate are
not performed and hence execution is faster. For this reason,
memory controllers reorder memory accesses so that memory
accesses to the row that is in the row buffer get ahead in certain
queues in the memory controller. Consequently, a memory
access can be delayed because other memory accesses, of other
tasks, get ahead in the queue (reordering effect). Hence, if the
virtual-to-physical address translation is set up so that for the
physical addresses generated by tasks, it holds that no two of
them access the same bank, then it is guaranteed that no task
can suffer from this reordering effect. In addition, a memory
access can also be delayed because other accesses use the
memory bus. This brings the challenges:

C2. Configure the virtual-to-physical address trans-
lation so that a cache block fetched to the last-level
cache by one task cannot be evicted by another task.

C3. Configure the virtual-to-physical address trans-
lation so that reordering of memory accesses from
different tasks are avoided and if they do occur, then
the schedulability analysis computes an upper bound
on the extra execution time due to reordering.

C4. Compute an upper bound on the extra execution
time caused by processors sharing the memory bus.

The research literature offers solutions for each of these
challenges (see Table I). Unfortunately, the research literature
offers no solution for all these challenges.

Therefore, in this paper, we present a solution for all
these challenges. We assume global-EDF (gEDF) is used and
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TABLE I: Summary of the state of art.

consider a previously known [1] schedulability test for it; we
choose gEDF and this schedulability test because among the
schedulers and schedulability tests available for tasks with
potential parallelism, gEDF with our chosen schedulability
test offers the best performance bound [1]. We reformulate
this schedulability test as a Mixed-Integer Linear Program
(MILP) and extend this formulation so that it (i) configures
the virtual-to-physical address translation so that a cache block
fetched to the last-level cache by one task cannot be evicted
by another task, (ii) configures the virtual-to-physical address
translation to attempt to eliminate the extra execution time
caused by the reordering effect in the memory controller, and
if this is not possible, the reordering effect is considered in
the schedulability analysis, and (iii) considers the effect of
contention for the memory bus.

The remainder of this paper is organized as follows.
Section II presents the system model we use. Section III adapts
a previously known schedulability test for gEDF to a MILP
formulation. Section IV presents additional constraints that
express an upper bound on the execution time of a segment
due to memory contention and how it depends on memory
mapping, and also express other constraints. Section V puts
it all together as a solution for all the four challenges. Then
follow discussions and conclusions.

II. SYSTEM MODEL

Fig. 1 illustrates the model we consider. We consider a
system with (i) a computer with m processors of speed s and
(ii) a software system described as a taskset τ . A task τi in
τ is characterized by Ti, Di, nstagesi, nsegi,j, and Ci,j with
the interpretation that τi generates a sequence of jobs where
the arrival times of two consecutive jobs of τi are separated
by at least Ti and a job of τi needs to finish execution by the
absolute deadline of the job (the absolute deadline of a job of
τi is Di time units after its arrival) and execution requirement
is described with stages where nstagesi denotes the number
of stages of a job of τi and nsegi,j denotes the number of
segments of the jth stage of a job of τi. Let Ci,j denote
an upper bound on the execution requirement of a segment
of the jth stage of τi (explained later in this section). A job
executing contiguously for ∆ time units performs ∆× s units
of execution. We assume ∀τi ∈ τ : Di ≤ Ti — such tasksets
are called constrained-deadline sporadic tasksets.

When a job of task τi arrives, all the nsegi,1 segments
of the 1st stage of task τi become eligible for execution. For
each j ≥ 2, at the time when all the nsegi,j−1 segments of the
(j−1)th stage of task τi have finished, all the nsegi,j segments
of the jth stage of task τi become eligible for execution. A
segment becomes non-eligible when it has finished execution.

A job of task τi finishes when all the nsegi,nstagesi segments
of the nstagesi

th stage of this job have finished.

gEDF assigns high priority to jobs with early absolute
deadlines and a segment inherits the priority of the job it
belongs to. At each instant, if at most m segments are eligible
for execution at this instant, then all of them execute at this
instant; if m+ 1 or more segments are eligible for execution,
then the m highest priority segments at this instant are selected
for execution at this instant. A taskset τ is gEDF schedulable
on a computer with m processors of speed s if for each jobset
that τ can generate, for each schedule that gEDF can generate
for this jobset, it holds that all deadlines are met.

Each segment of a stage of a task has a virtual address
space. The virtual address space is organized into pages of
size PAGESIZE. (For example, for x86, PAGESIZE=4096
bytes.) The memory footprint of a segment of the jth stage
of τi is at most npi,j pages. Each page is associated with
a range of virtual addresses. A virtual address is mapped
to a physical address as follows. The log2 PAGESIZE least
significant bits of the virtual address are copied to the least
significant bits of the physical address. (These least significant
bits of the physical address are called frame offset.) The other
bits of the virtual address are called page index and these are
translated to a frame index and the bits of the frame index
are copied to the most significant bits of the physical address.
sharedframes denotes a set of 8-tuples so that for each 8-
tuple 〈i′, j′, g′, p′, i′′, j′′, g′′, p′′〉 it is required that page p′ of
the g′th segment of the j′th stage of τi′ is mapped to the same
frame as page p′′ of the g′′th segment of the j′′th stage of τi′′ .
We assume that for such 8-tuples τi′ = τi′′ (because otherwise
cache coloring, as we will see, does not work).

In our previous work [13], we presented and validated
a model of the memory system of typical COTS multicore
processor based systems. In this paper, we use a model
that improves on that model by having a more fine-grained
description of memory accesses. Our model is as follows.
The last-level cache (LLC) is shared between processors. This
cache is organized as a set of cache sets where certain bits
in the physical address determine which cache set a memory
access is associated with. Some of these bits are part of the
frame index and some are part of the frame offset. When a
memory access experiences a miss in LLC, the memory access
is passed on to the memory controller and identifies which
memory bank the memory access is associated with (certain
bits in the frame index determine this) and which row in this
memory bank it is associated with (other bits in the frame
index determine this) and it is inserted in a queue for memory
accesses to this memory bank. The queuing discipline First-
Ready-First-In-First-Out (FR-FIFO) is used. With this queuing
discipline, FIFO is used but with the following exceptions (i) a
memory access can be prevented from being performed at
certain instants because there are DRAM timing parameters
which state that a certain part of a DRAM access must wait
until a certain timing requirement (based on previous memory
accesses) is satisfied and (ii) elements in the queue of a
memory bank can be reordered so that a memory access gets to
the head of the queue when this memory access is associated
with the row that is currently loaded in the row buffer. When
a memory access gets to the head of the queue of the memory
bank, it contends for the memory bus with memory accesses
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Fig. 1: The model we consider.

of other memory banks. When a memory access is granted
the memory bus, the memory access precharges its associated
memory bank (that is, the data in the row buffer is written
back to its row in the memory bank) and then the memory
access activates its associated row in its associated memory
bank (that is, the data in this row is loaded to the row buffer)
and finally it transfers data (from the row buffer of the memory
bank to the memory controller if the memory access is a load;
the other direction if it is a store). If the row associated with
the memory access is already in the row buffer then precharge
and activate are not performed.

Ci,j(map) denotes an upper bound on the execution re-
quirement of a segment in the jth stage of τi for the case
that this segment does not experience contention for resources
in the memory system from other segments and map is the
memory mapping of all tasks in the system. MAi,j,p(map)
denotes an upper bound on the number of memory accesses
reaching the memory controller of page p of a segment in
the jth stage of τi for the case that this segment does not
experience contention for resources in the memory system
from other segments and map is the memory mapping of all
tasks in the system.

In today’s processors, typically, the bits in the physical
address from which the cache set index of LLC is obtained
overlaps with the bits that determine the frame index (see
[28]). Also, in today’s processors, typically, the bits in the
the physical address from which the bank index is obtained
overlaps with the bits that determine the frame index (see
[28]). Therefore, one can partition memory frames of physical
memory into cache colors so if two memory accesses belong to
different frames and these two memory frames belong to two
different cache colors, then it holds that one memory access
cannot evict a cache block fetched to LLC by the another mem-
ory access. One can also partition memory frames of physical
memory into bank colors so if two memory accesses belong to
different frames and these two memory frames belong to two
different bank colors, then it holds that one memory access

cannot evict a row in a memory bank that another memory
access has loaded. H denotes the number of cache colors and
B denotes the number of bank colors. MEMCAP denotes
the amount of physical memory in the computer, measured in
the number of frames. Some recent multicore chips use sliced
LLC; such chips prevent us from using 100% of the main
memory when using cache partitioning [14]. For this reason,
let HWSHARE denote the share of physical memory that we
may use. Let CAP = HWSHARE ×MEMCAP/(H × B).
(In a typical x86 computer today, MEMCAP = 231/4096 =
219,H = 32,B = 16, HWSHARE = 1/4 and this yields
CAP = (1/4)× 219/(32× 16) = 28)

Let Ci,j be a value such that ∀map : Ci,j(map) ≤ Ci,j .
Let MAi,j,p be a value such that ∀map : MAi,j,p(map) ≤
MAi,j,p. In practice, if the memory mapping map is known,
then it is possible to obtain Ci,j(map) and MAi,j,p(map) (e.g.
using a worst-case execution-time analysis tool) but obtaining
Ci,j and MAi,j,p is very expensive because they describe
behavior of the software for all possible memory mappings
of the system. Even if Ci,j and MAi,j,p are obtained, it can
happen that our algorithm selects an abstract memory mapping
o and we choose a memory mapping map that is compatible
with o and that Ci,j is much higher than Ci,j(map) (and
analogously for MAi,j,p(map)). This would result in large
pessimism. We will discuss (in Section VI) how to deal with
these issues. For now, assume Ci,j and MAi,j,p are known.

We assume (as do many previous studies [31, 22, 19]) that
a processor is stalled when it waits for memory. We use some
notation from [13], namely, the following:

L
PRE
inter = tCK (8)

L
ACT
inter = max(tRRD, tFAW − 3× tRRD)× tCK (9)

L
RW
inter = max(WL + BL/2 + tWTR,CL + BL/2 + 2−WL)× tCK (10)

Linter = L
PRE
inter + L

ACT
inter + L

RW
inter (11)

Lconf = tRP + tRCD +

max(CL + BL/2 + 2,WL + BL/2 + max(tWTR, tWR))× tCK (12)

Lconhit(x) = (dx/2e × (WL + BL/2 + tWTR) +

bx/2c × CL + max(tWR − tWTR))× tCK (13)
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Ci
def
=

nstagesi∑
j=1

(nsegi,j × Ci,j) ηi
def
=

nstagesi∑
j=1

(
d

nsegi,j

m
e × Ci,j

)
(1)

WJ(τi, t, s)
def
=


0 if t < 0

WJS(i, t, 1, s) if 0 ≤ t < ηi
s

Ci if ηis ≤ t
bspi,j

def
=

Ci,j

s
× b

nsegi,j

m
c spi,j

def
=

Ci,j

s
× d

nsegi,j

m
e (2)

WJS(i, t, j, s)
def
=


t×m× s if 0 ≤ t < bspi,j

bspi,j ×m× s+ (t− bspi,j)× (nsegi,j mod m)× s if bspi,j ≤ t < spi,j
Ci,j × nsegi,j + WJS(i, t− spi,j , j + 1, s) if spi,j ≤ t

(3)

ffdbf(τi, t, v, s)
def
= b

t

Ti
c × Ci + Ci −WJ(τi, (Di − (t mod Ti))× v, s) (4)

h(τ,m, s, σ, t)
def
= (

∑
τi∈τ

ffdbf(τi, t,
σ

s
, s) ≤ ((m− (m− 1)×

σ

s
)× t× s)) (5)

f(τ,m, s)
def
=
(
∃σ such that (σ ≥ max

τi∈τ

ηi

Di
) ∧ (∀t such that t ≥ 0 : h(τ,m, s, σ, t))

)
(6)

f(τ,m, s)⇒ τ is gEDF schedulable on a computer with m processors of speed s for the case that tasks do not experience memory contention (7)

Fig. 2: Previously known schedulability analysis for gEDF scheduling of parallel tasks.

The first is the time required for precharge; the second is the
time required for activate; the third is the time for data transfer.
Lconf denotes row-conflict service time and Lconhit(x) is a
function which describes the time it takes to serve x consec-
utive memory accesses to the same row in the same memory
bank if the row was already activated. These parameters can
be obtained from DRAM datasheets — see [13]. P denotes the
least common multiple of Ti values. DMAX = maxτi∈τ Di.
Nre is a parameter which describes the limit that the hardware
imposes on reordering (to be discussed later). We define
UBNOMR =

∑
τ ′i

(maxj′∈[1,nstagesi′ ]
segi′,j′) meaning upper

bound on the number of outstanding memory requests. We also
define: LIM1 = min(m − 1,UBNOMR − 1) and LIM2 =
min(m− 1,UBNOMR− 1) +Nre.

Tasks typically perform execution and access memory in
an initialization phase which does not have real-time require-
ments. This execution and memory accesses are not considered
as a job but the pages accessed needs to be mapped to memory
frames. Therefore, INO indicates the the number of pages
accessed during initialization.

III. SCHEDULABILITY ANALYSIS FOR GEDF OF
PARALLEL TASKS

Previous work [1] provided a schedulability test for this
problem for the special case that contention for resources
in the memory system does not occur. Fig. 2 shows this
schedulability test. We will now discuss how to modify this
schedulability test slightly and then rewrite as MILP.

Let us choose a value of K that is a positive integer (e.g.
K = 20). In the schedulability test expressed by Fig. 2, check
only those σ such that there is a k ∈ {1, 2, . . . ,K} such that
σ = (k/K) × s. This yields the following schedulability test

with a slight increase in pessimism:

h
∗
(τ,m, s, k,K, t)

def
= (

∑
τi∈τ

ffdbf(τi, t,
k

K
, s) ≤ (m− (m− 1)×

k

K
)× t× s)

f
∗
(τ,m, s,K)

def
=
(
∃k ∈ {1, 2, . . . , K} such that (

k × s
K

≥ max
τi∈τ

ηi

Di
)∧

(∀t such that t ≥ 0 : h
∗
(τ,m, s, k,K, t))

)
f
∗
(τ,m, s,K)⇒ τ is gEDF schedulable on a computer with m processors

of speed s for the case that tasks do not experience memory contention

Clearly, t = bt/P c × P + t mod P . Thus∑
τi∈τ ffdbf(τi, t,

k
K , s) = bt/P c × P × (

∑
τi∈τ Ci/Ti) +∑

τi∈τ ffdbf(τi, t mod P, kK , s). Consequently when
evaluating (∀t such that t ≥ 0 : h∗(τ,m, s, k, K, t)), it
is only necessary to consider values of t that are at most
P . Hence, f∗(τ,m, s,K) is true if and only if there is an
assignment of values satisfying:

∑K
k=1 wik ≥ 1 and

∀k ∈ [1, K] : wik ∈ {0, 1}

∀〈i, k〉 such that (τi ∈ τ) ∧ (k ∈ [1, K]) : (wik = 1)⇒ (ηi ≤
s× k ×Di

K
)

∀k such that k ∈ [1, K] : (wik = 1)⇒
(∀t such that t ∈ [0, P ] : h

∗
(τ,m, s, k,K, t))

Observe that the left-hand side of the inequality defin-
ing h∗(τ,m, s, k,K, t) is a piecewise linear function of
t and the right-hand side of the inequality defining
h∗(τ,m, s, k,K, t) is a linear function of t. Hence, when
evaluating (∀t such that t ∈ [0, P ] : h∗(τ,m, s, k,K, t))
it is only necessary to evaluate h∗(τ,m, s, k,K, t) for the
following values of t: (i) values of t such that the derivative
of the piecewise linear function changes, (ii) t = P , and
(iii) t = 0. With respect to (iii), note that h∗(τ,m, s, k,K, 0)
is true and hence it does not need to be checked. With
respect to (ii), note that h∗(τ,m, s, k,K, P ) can be rewritten as
((
∑
τi∈τ Ci/Ti) ≤ (m−(m−1)×(k/K))×s). With respect to

(i), note that for t such that there is a positive integer q′ and a
task τi′ ∈ τ such that t = (q′−1)×Ti′+Di′−(ηi′/s)×(K/k),
the above mentioned derivative changes but this t is dominated
by other t:s in the condition and hence, this t does not need to
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be checked. Hence, f∗(τ,m, s,K) is true if and only if there
is an assignment of values satisfying:

∑K
k=1 wik ≥ 1 and

∀k ∈ [1, K] : wik ∈ {0, 1}

∀〈i, k〉 such that (τi ∈ τ) ∧ (k ∈ [1, K]) : (wik = 1)⇒ (ηi ≤
s× k ×Di

K
)

∀〈i′, q′, j′, f ′, k〉 such that (τi′ ∈ τ) ∧ (q
′ ∈ [1, P/Ti′ ]) ∧

(j
′ ∈ [0, nstagesi′ − 1]) ∧ (f

′ ∈ {0, 1}) ∧ (k ∈ [1, K]) : ti′,q′,j′,f′,k =

(q
′ − 1)× Ti′ +Di′ − ((

∑
j′′∈[1,j′]

spi′,j′′ ) + f
′ × bspi′,j′+1)×

K

k

∀〈i′, q′, j′, f ′, k〉 such that (τi′ ∈ τ) ∧ (q
′ ∈ [1, P/Ti′ ]) ∧

(j
′ ∈ [0, nstagesi′ − 1]) ∧ (f

′ ∈ {0, 1}) ∧ (k ∈ [1, K]) : (wik = 1)⇒

(
∑
τi∈τ

ffdbf(τi, ti′,q′,j′,f′,k,
k

K
, s)

≤ (m− (m− 1)×
k

K
)× ti′,q′,j′,f′,k × s)

∀k such that k ∈ [1, K] : (wik = 1)⇒

((
∑
τi∈τ

Ci/Ti) ≤ (m− (m− 1)× (k/K))× s)

We will now rewrite ffdbf(τi, ti′,q′,j′,f ′,k,
k
K , s) to a form

closer to MILP. Define Ii,q,i′,q′,j′,f ′,k so that Ii,q,i′,q′,j′,f ′,k =
1 if bti′,q′,j′,f ′,k/Tic = q; otherwise Ii,q,i′,q′,j′,f ′,k = 0. De-
fine ri,i′,q′,j′,f ′,k = ti′,q′,j′,f ′,k mod Ti. Define aji,i′,q′,j′,f ′,k
so that (Ii,q,i′,q′,j′,f ′,k = 1)⇒ (aji,i′,q′,j′,f ′,k = (q+1)×Ci).
Then, using (4), rewrite ffdbf(τi, ti′,q′,j′,f ′,k,

k
K , s) as:

aji,i′,q′,j′,f′,k −WJ(τi, (Di − ri,i′,q′,j′,f′,k)×
k

K
, s)

We introduce wjf ,wjsf ,wjss, and wjt as:

1) wjfi,i′,q′,j′,f ′,k = 1 means that when WJ(τi, (Di −
ri,i′,q′,j′,f ′,k) × k

K , s) is called, the first case in the
definition of WJ is taken; otherwise wjfi,i′,q′,j′,f ′,k = 0.

2) wjsfi,j,i′,q′,j′,f ′,k = 1 means that when WJ(τi, (Di −
ri,i′,q′,j′,f ′,k)× k

K , s) is called, the second case in the def-
inition of WJ is taken and recursion is performed in WJS
in which stage j is the last entire stage covered and the
first case in (3) is taken; otherwise wjsfi,j,i′,q′,j′,f ′,k = 0.

3) wjssi,j,i′,q′,j′,f ′,k = 1 means that when WJ(τi, (Di −
ri,i′,q′,j′,f ′,k) × k

K , s) is called, the second case in the
definition of WJ is taken and recursion is performed
in WJS in which stage j is the last entire stage cov-
ered and the second case in (3) is taken; otherwise
wjssi,j,i′,q′,j′,f ′,k = 0.

4) wjti,i′,q′,j′,f ′,k = 1 means that when WJ(τi, (Di −
ri,i′,q′,j′,f ′,k) × k

K , s) is called, the third case in the
definition of WJ is taken; otherwise wjti,i′,q′,j′,f ′,k = 0.

Elaborating on this yields that f∗(τ,m, s,K) is true if and
only if there is an assignment of values to variables such that
the constraints in Fig. 3 are satisfied. In Fig. 2, Ci,j denotes
the upper bound on the execution requirement of a segment in
the jth stage of task τi but in Fig. 3 cui,j denotes this. (cui,j
means execution requirement that we will use.)

IV. MEMORY CONTENTION

Previous work [13] provided a method for computing
an upper bound on the response time of a task considering
contention for resources in the memory system. That method
assumes fixed-priority preemptive non-migrative scheduling
and integrates the memory contention analysis in the schedu-
lability analysis. In this section, we will adapt this memory

contention analysis (i) to compute an upper bound on the extra
execution time of a segment of a single job of a task and do it
without assuming any specific processor scheduling algorithm
and (ii) expressing it on a form easily translatable to MILP.

Let cmi,j,g denote an upper bound on the execution re-
quirement of the gth segment of the jth stage of task τi
considering contention for resources in the memory system
(the extra execution of this contention is considered to be
part of the execution requirement). Also, recall that cui,j was
defined in the previous section. We will now redefine it. Let
cui,j denote an upper bound on the execution requirement of
a segment of the jth stage of task τi considering contention
for resources in the memory system (the extra execution of
this contention is considered to be part of the execution
requirement). Hence:

cui,j = max
g∈[1,nsegi,j ]

cmi,j,g (34)

(47),(48),(49) express (34) as MILP.

Let oi,j,g,p,h,b = 1 indicate that the page with page index
p of the gth segment of the jth stage of task τi is mapped
to a memory frame with cache color h and bank color b;
otherwise oi,j,g,p,h,b = 0. Clearly, a page can only be mapped
to one frame and one frame belongs to exactly one cache color
and one bank color. Hence, each page belongs to exactly one
combination of cache and bank color. This yields (41). Also,
if a cache color and bank color is given then the number of
pages that can be mapped to this combination of cache color
and bank color cannot exceed its amount of physical memory.
In order to express this, let GSi,j,g,p be a constant that indicates
how many pages maps to the same frame as page p of the gth
segment of the jth stage of τi maps to. For normal pages,
it holds that GSi,j,g,p = 1 but if a page maps to a shared
frame then GSi,j,g,p is larger. GSi,j,g,p can be computed as
follows. Form a graph, with one vertex for each each 〈i, j, g, p〉
and there is an edge between two vertices 〈i′, j′, g′, p′〉 and
〈i′′, j′′, g′′, p′′〉 if 〈i′, j′, g′, p′, i′′, j′′, g′′, p′′〉 ∈ sharedframes.
Compute the connected components of the graph. Then, for
〈i, j, g, p〉, let GSVSi,j,g,p denote the set of vertices in the
connected component to which the vertex corresponding to
〈i, j, g, p〉 belong. let GSTSi,j,g,p denote the set of tuples that
correspond to GSVSi,j,g,p. Let GSi,j,g,p denote the cardinality
of GSTSi,j,g,p.

With GSi,j,g,p, the limited memory capacity can be ex-
pressed by (42). In addition, the requirement on shared frames,
expressed by the set sharedframes, yields (50). inoh,b indi-
cates the the number of pages accessed during initialization
that maps to frames of which belong to cache color h and
bank color b.

For a pair of segments that could possibly execute in
parallel, we require that the memory mapping is set up so that
one segment cannot evict a cache block that another segment
has fetched to the cache. (44),(45), and (46) express that.

Let mbi,j,g,b denote an upper bound on the number of
memory accesses from the gth segment of the jth stage of task
τi to memory bank b. This gives us (38). Let mmbi,i′,j′,g′,b
be an upper bound on the number of memory accesses on
memory bank b from multiple jobs of the g′th segment of the
j′th stage of task τi′ such that these memory access can impact
a job of τi. (39) expresses it. In the proof of Theorem 1, we
will show that it is an upper bound. Let mmboi,i′,j′,g′,b be an
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cui =

nstagesi∑
j=1

(nsegi,j × cui,j) etaui =

nstagesi∑
j=1

(
d

nsegi,j

m
e × cui,j

)
bspui,j =

cui,j

s
× b

nsegi,j

m
c spui,j =

cui,j

s
× d

nsegi,j

m
e (14)

∀〈i′, q′, j′, f ′, k〉 such that (τi′ ∈ τ) ∧ (q
′ ∈ [1, P/Ti′ ]) ∧ (j

′ ∈ [0, nstagesi′ − 1]) ∧ (f
′ ∈ {0, 1}) ∧ (k ∈ [1, K]) :

(wik = 1)⇒ (ti′,q′,j′,f′,k = (q
′ − 1)× Ti′ +Di′ − ((

∑
j′′∈[1,j′]

spui′,j′′ ) + f
′ × bspui′,j′+1)× (K/k)) (15)

∀〈i, i′, q′, j′, f ′, k〉 such that (τi ∈ τ) ∧ (τi′ ∈ τ) ∧ (q
′ ∈ [1, P/Ti′ ]) ∧ (j

′ ∈ [0, nstagesi′ − 1]) ∧ (f
′ ∈ {0, 1}) ∧ (k ∈ [1, K]) :

ti′,q′,j′,f′,k = (
∑

q∈[1,P/Ti]

Ii,q,i′,q′,j′,f′,k × q × Ti) + ri,i′,q′,j′,f′,k (16)

∀〈i, i′, q′, j′, f ′, k〉 such that (τi ∈ τ) ∧ (τi′ ∈ τ) ∧ (q
′ ∈ [1, P/Ti′ ]) ∧ (j

′ ∈ [0, nstagesi′ − 1]) ∧ (f
′ ∈ {0, 1}) ∧ (k ∈ [1, K]) :∑

q∈[0,P/Ti]

Ii,q,i′,q′,j′,f′,k = 1 (17)

∀〈i, i′, q′, j′, f ′, k〉 such that (τi ∈ τ) ∧ (τi′ ∈ τ) ∧ (q
′ ∈ [1, P/Ti′ ]) ∧ (j

′ ∈ [0, nstagesi′ − 1]) ∧ (f
′ ∈ {0, 1}) ∧ (k ∈ [1, K]) : ri,i′,q′,j′,f′,k ≤ Ti (18)

∀〈i, q, i′, q′, j′, f ′, k〉 such that (τi ∈ τ) ∧ (q ∈ [0, P/Ti]) ∧ (τi′ ∈ τ) ∧ (q
′ ∈ [1, P/Ti′ ]) ∧ (j

′ ∈ [0, nstagesi′ − 1]) ∧ (f
′ ∈ {0, 1}) ∧ (k ∈ [1, K]) :

(Ii,q,i′,q′,j′,f′,k = 1)⇒ (aji,i′,q′,j′,f′,k = (q + 1)× cui) (19)

∀〈i, i′, q′, j′, f ′, k〉 such that (τi ∈ τ) ∧ (τi′ ∈ τ) ∧ (q
′ ∈ [1, P/Ti′ ]) ∧ (j

′ ∈ [0, nstagesi′ − 1]) ∧ (f
′ ∈ {0, 1}) ∧ (k ∈ [1, K]) :

wjfi,i′,q′,j′,f′,k + (
∑

j∈[0,nstagesi−1]

wjsfi,j,i′,q′,j′,f′,k) + (
∑

j∈[0,nstagesi−1]

wjssi,j,i′,q′,j′,f′,k) + wjti,i′,q′,j′,f′,k = 1 (20)

∀〈i, i′, q′, j′, f ′, k〉 such that (τi ∈ τ) ∧ (τi′ ∈ τ) ∧ (q
′ ∈ [1, P/Ti′ ]) ∧ (j

′ ∈ [0, nstagesi′ − 1])∧
(f
′ ∈ {0, 1}) ∧ (k ∈ [1, K]) : (wjfi,i′,q′,j′,f′,k = 1)⇒ ((Di − ri,i′,q′,j′,f′,k)× (k/K) ≤ 0) (21)

∀〈i, j, i′, q′, j′, f ′, k〉 such that (τi ∈ τ) ∧ (j ∈ [0, nstagesi − 1]) ∧ (τi′ ∈ τ) ∧ (q
′ ∈ [1, P/Ti′ ]) ∧ (j

′ ∈ [0, nstagesi′ − 1])∧

(f
′ ∈ {0, 1}) ∧ (k ∈ [1, K]) : (wjsfi,j,i′,q′,j′,f′,k = 1)⇒ (

∑
j′′∈[1,j]

spui,j′′ ≤ (Di − ri,i′,q′,j′,f′,k)× (k/K) ≤ (
∑

j′′∈[1,j]

spui,j′′ ) + bspui,j+1) (22)

∀〈i, j, i′, q′, j′, f ′, k〉 such that (τi ∈ τ) ∧ (j ∈ [0, nstagesi − 1]) ∧ (τi′ ∈ τ) ∧ (q
′ ∈ [1, P/Ti′ ]) ∧ (j

′ ∈ [0, nstagesi′ − 1])∧

(f
′ ∈ {0, 1}) ∧ (k ∈ [1, K]) : (wjssi,j,i′,q′,j′,f′,k = 1)⇒ ((

∑
j′′∈[1,j]

spui,j′′ ) + bspui,j+1 ≤ (Di − ri,i′,q′,j′,f′,k)× (k/K) ≤
∑

j′′∈[1,j+1]

spui,j′′ ) (23)

∀〈i, i′, q′, j′, f ′, k〉 such that (τi ∈ τ) ∧ (τi′ ∈ τ) ∧ (q
′ ∈ [1, P/Ti′ ]) ∧ (j

′ ∈ [0, nstagesi′ − 1])∧

(f
′ ∈ {0, 1}) ∧ (k ∈ [1, K]) : (wjti,i′,q′,j′,f′,k = 1)⇒ (

∑
j′′∈[1,nstagesi]

spui,j′′ ≤ (Di − ri,i′,q′,j′,f′,k)× (k/K)) (24)

∀〈i, i′, q′, j′, f ′, k〉 such that (τi ∈ τ) ∧ (τi′ ∈ τ) ∧ (q
′ ∈ [1, P/Ti′ ]) ∧ (j

′ ∈ [0, nstagesi′ − 1])∧
(f
′ ∈ {0, 1}) ∧ (k ∈ [1, K]) : (wjfi,i′,q′,j′,f′,k = 1)⇒ (wi,i′,q′,j′,f′,k = 0) (25)

∀〈i, j, i′, q′, j′, f ′, k〉 such that (τi ∈ τ) ∧ (j ∈ [0, nstagesi − 1]) ∧ (τi′ ∈ τ) ∧ (q
′ ∈ [1, P/Ti′ ]) ∧ (j

′ ∈ [0, nstagesi′ − 1])∧

(f
′ ∈ {0, 1}) ∧ (k ∈ [1, K]) : (wjsfi,j,i′,q′,j′,f′,k = 1)⇒ (wi,i′,q′,j′,f′,k = (

∑
j′′∈[1,j]

nsegi,j′′ × cui,j′′ )+

((Di − ri,i′,q′,j′,f′,k)× (k/K)− (
∑

j′′∈[1,j]

spui,j′′ ))×m× s) (26)

∀〈i, j, i′, q′, j′, f ′, k〉 such that (τi ∈ τ) ∧ (j ∈ [0, nstagesi − 1]) ∧ (τi′ ∈ τ) ∧ (q
′ ∈ [1, P/Ti′ ]) ∧ (j

′ ∈ [0, nstagesi′ − 1])∧

(f
′ ∈ {0, 1}) ∧ (k ∈ [1, K]) : (wjssi,j,i′,q′,j′,f′,k = 1)⇒ (wi,i′,q′,j′,f′,k = (

∑
j′′∈[1,j]

nsegi,j′′ × cui,j′′ )+

bspui,j+1 ×m× s+ ((Di − ri,i′,q′,j′,f′,k)× (k/K)− (
∑

j′′∈[1,j]

spui,j′′ )− bspui,j+1)× (nsegi,j mod m)× s) (27)

∀〈i, i′, q′, j′, f ′, k〉 such that (τi ∈ τ) ∧ (τi′ ∈ τ) ∧ (q
′ ∈ [1, P/Ti′ ]) ∧ (j

′ ∈ [0, nstagesi′ − 1])∧
(f
′ ∈ {0, 1}) ∧ (k ∈ [1, K]) : (wjti,i′,q′,j′,f′,k = 1)⇒ (wi,i′,q′,j′,f′,k = cui) (28)

∀〈i′, q′, j′, f ′, k〉 such that (τi′ ∈ τ) ∧ (q
′ ∈ [1, P/Ti′ ]) ∧ (j

′ ∈ [0, nstagesi′ − 1]) ∧ (f
′ ∈ {0, 1}) ∧ (k ∈ [1, K]) :

(wik = 1)⇒ ((
∑
τi∈τ

(aji,i′,q′,j′,f′,k − wi,i′,q′,j′,f′,k)) ≤ (m− (m− 1)× (k/K))× ti′,q′,j′,f′,k × s) (29)

∀k such that k ∈ [1, K] : (wik = 1)⇒ ((
∑
τi∈τ

cui/Ti) ≤ (m− (m− 1)× (k/K))× s) (30)

∀〈i, k〉 such that (τi ∈ τ) ∧ (k ∈ [1, K]) : (wik = 1)⇒ (etaui ≤ (k/K)× s×Di) (31)
K∑
k=1

wik ≥ 1 (32)

cui,j ∈ R≥0, cui ∈ R≥0, etaui ∈ R≥0, bspui,j ∈ R≥0, spui,j ∈ R≥0, ti′,q′,j′,f′,k ∈ R≥0, Ii,q,i′,q′,j′,f′,k ∈ {0, 1}, ri,i′,q′,j′,f′,k ∈ R≥0,

aji,i′,q′,j′,f′,k ∈ R≥0,wjfi,i′,q′,j′,f′,k ∈ {0, 1},wjsfi,j,i′,q′,j′,f′,k ∈ {0, 1},wjssi,j,i′,q′,j′,f′,k ∈ {0, 1},wjti,i′,q′,j′,f′,k ∈ {0, 1},
wi,i′,q′,j′,f′,k ∈ R≥0,wik ∈ {0, 1} (33)

Fig. 3: Schedulability analysis for gEDF scheduling of parallel tasks formulated as a MILP.
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coati,j,g,b 

mmboi,j,g,b mbi,j,g,b * 
LIM1 

mbi,j,g,b * 
(LIM1+1) 

mbi,j,g,b * 
LIM2 

mbi,j,g,b *LIM1* 
(Lconf+Linter) 

mbi,j,g,b *(LIM1+1)* 
(Lconf+Linter) 

mbi,j,g,b *(LIM1* 
(Lconf+Linter+Lconhit(Nre)) 

Fig. 4: Contention on bank queue. The vertical axis shows an
upper bound on the delay that the mbi,j,g,b memory accesses
from the gth segment of the jth stage of task τi can suffer
from because the other mmboi,j,g,b memory accesses from
other segments access memory of bank b and hence contend
on the queue for memory bank b.

upper bound on the number of memory accesses on memory
bank b from multiple jobs of all other segments than the gth
segment of the jth stage of task τi such that these memory
accesses can impact a job of the gth segment of the jth stage
of task τi. (40) expresses it.

Now consider memory contention. Look at the queues
inside the memory controller in Fig. 1. Consider the gth

segment of the jth stage of task τi and its (at most mbi,j,g,b)
memory accesses that it performs on memory locations of
memory bank b. Let coati,j,g,b denote an upper bound on the
extra execution time of this segment because other memory
accesses (from other segments) access this bank (bank b).
Let oaoi,j,g,b denote an upper bound on the number of other
memory accesses that causes extra execution time of this
segment because other memory accesses (from other segments)
access other banks (than bank b). Then, we express cmi,j,g as

cmi,j,g = Ci,j + s× (

B−1∑
b=0

(coati,j,g,b + Linter × oaoi,j,g,b)) (35)

In the above equation, we multiply by s because coati,j,g,b
and Linter×oaoi,j,g,b measure execution time whereas cmi,j,g

measures execution requirement.

We will now find expressions for coati,j,g,b and oaoi,j,g,b.
For this purpose, look again at the queues inside the memory
controller in Fig. 1. A single memory access accessing bank
b can be delayed by the following:

1) There are already memory accesses in the queue of bank b
when this single memory access is inserted in the queue of
bank b and because of FIFO queuing, these other memory
accesses are served first.

2) After this single memory access is enqueued in the queue
for bank b, there are other memory accesses enqueued
in this bank and these other memory accesses’ row is
currently loaded in the row buffer and hence they get
ahead in the queue for this memory bank (reordering).

3) When one of the other memory accesses mentioned in
1) or 2) reaches the head of the queue of bank b, it is
not served immediately; instead it has to wait for the
memory bus being granted and this takes time because
other memory accesses in the queues to other memory
banks than bank b use the memory bus.

About 1) and 2) Since we assume a processor stalls
until its memory access has been completed, it follows that

from each processor, there can be at most one outstanding
memory access and hence there are at most LIM1 memory
accesses of 1) above. The hardware places a limit on the
number of reorderings that can happen. In previous work
[13], we introduced the parameter to indicate an upper bound
on the number of those reorderings that a single memory
access can experience. In this paper, we let Nre denote this
parameter; a typical value [13] is Nre = 12. Consequently, the
mbi,j,g,b memory accesses from the gth segment of the jth

stage of task τi performing on bank b has to wait for at most
mbi,j,g,b × (LIM1 +Nre) = mbi,j,g,b × LIM2 other memory
accesses performing on bank b (because of 1) and 2) above).
Because mmbi,i′,j′,g′,b is an upper bound on the number of
memory accesses from the g′th segment of the j′th stage of
task τi′ that can be performed in parallel with a segment of
a job of task τi, assuming that the job of task τi meets its
deadline, it follows, using (40), that: The mbi,j,g,b memory
accesses from the gth segment of the jth stage of task τi
performing on bank b has to wait for at most

min
(
mbi,j,g,b × LIM2,mmboi,j,g,b) (36)

other memory accesses performing on bank b (because of
1) and 2) above). Let oati,j,g,b be the expression in (36). (It
means other accesses to this bank.) By inspecting Lconhit(x)
and the parameters in Section II, one can see that these memory
accesses have different effects; the memory accesses that are
in the queue before a memory access has arrived to the queue
cause more interference than the ones that arrive later that
cause reordering. Fig. 4 shows an upper bound.

About 3) A memory access related to memory bank b
is inserted in the queue for the memory bus only if (i) this
memory access is at the head of the queue of the memory
bank b and (ii) there is no memory access related to memory
bank b already in the queue of the memory bus. Hence, a
memory access that has reached the head of the queue of its
memory bank needs to wait for at most B-1 other memory
accesses until it is granted the memory bus. Consequently,
the mbi,j,g,b memory accesses from the gth segment of the
jth stage of task τi performing on bank b has to wait for at
most (mbi,j,g,b + oati,j,g,b)× (B− 1) other memory accesses
performing on bank b (because of 3)). Because mmbi,i′,j′,g′,b
is an upper bound on the number of memory accesses from the
g′th segment of the j′th stage of task τi′ that can be performed
in parallel with a segment of a job of task τi, assuming that
the job of task τi meets its deadline, it follows, using (40),
that: The mbi,j,g,b memory accesses from the gth segment of
the jth stage of task τi performing on bank b has to wait for
at most
min

(
(mbi,j,g,b + oati,j,g,b)× (B − 1),

∑
b′′∈[0,B−1]∧(b′′ 6=b)

mmboi,j,g,b′′
)

(37)

other memory accesses performing on other banks than bank
b (because of 3) above).

This reasoning yields an upper bound on the execution
requirement of a segment on a form close to MILP — see
Fig. 5.

V. THE MILP FORMULATION

Let Π denote the computer platform (the parameters m,
s, H , B and the parameters describing the memory system).
fmem(τ,Π,K) is a function which returns the tuple 〈flag, o〉
where flag is a boolean and o is a multi-dimensional array. If
there exists an assignment of values to the variables so that
the constraints in Fig. 3 and Fig. 5 are satisfied then flag is
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∀〈i, j, g, b〉 such that (τi ∈ τ) ∧ (j ∈ [1, nstagesi]) ∧ (g ∈ [1, nsegi,j ]) ∧ (b ∈ [0, B − 1]) : mbi,j,g,b =

npi,j−1∑
p=0

H−1∑
h=0

MAi,j,p × oi,j,g,p,h,b (38)

∀〈i, i′, j′, g′, b〉 such that (τi ∈ τ) ∧ (τi′ ∈ τ) ∧ (j
′ ∈ [1, nstagesi′ ]) ∧ (g

′ ∈ [1, nsegi′,j′ ]) ∧ (b ∈ [0, B − 1]) :

mmbi,i′,j′,g′,b = (d
Di

T ′i
e+ 1)×mbi′,j′,g′,b (39)

∀〈i, j, g, b〉 such that (τi ∈ τ) ∧ (j ∈ [1, nstagesi]) ∧ (g ∈ [1, nsegi,j ]) ∧ (b ∈ [0, B − 1]) :

mmboi,j,g,b =
∑
τ
i′∈τ

∑
j′∈[1,nstages

i′ ]

∑
g′∈[1,nseg

i′,j′ ]∧(((i
′=i)∧(j′=j)∧(g′ 6=g))∨(i′ 6=i))

mmbi,i′,j′,g′,b (40)

∀〈i, j, g, p〉 such that (τi ∈ τ) ∧ (j ∈ [1, nstagesi]) ∧ (g ∈ [1, nsegi,j ]) ∧ (p ∈ [0, npi,j − 1]) :

H−1∑
h=0

B−1∑
b=0

oi,j,g,p,h,b = 1 (41)

∀〈h, b〉 such that (h ∈ [0, H − 1]) ∧ (b ∈ [0, B − 1]) : (
∑
τi∈τ

∑
j∈[1,nstagesi]

∑
g∈[1,nsegi,j ]

∑
p∈[0,npi,j−1]

(
1

GSi,j,g,p
× oi,j,g,p,h,b)) + inoh,b ≤ CAP (42)

∑
h∈[0,H−1]

∑
b∈[0,B−1]

inoh,b = INO (43)

∀〈i, j, g, h〉 such that (τi ∈ τ) ∧ (j ∈ [1, nstagesi]) ∧ (g ∈ [1, nsegi,j ]) ∧ (h ∈ [0, H − 1]) : (xi,j,g,h = 1)⇒ (
∑

p∈[0,npi,j−1]

∑
b∈[0,B−1]

oi,j,g,p,h,b ≥ 1) (44)

∀〈i, j, g, h〉 such that (τi ∈ τ) ∧ (j ∈ [1, nstagesi]) ∧ (g ∈ [1, nsegi,j ]) ∧ (h ∈ [0, H − 1]) : (xi,j,g,h = 0)⇒ (
∑

p∈[0,npi,j−1]

∑
b∈[0,B−1]

oi,j,g,p,h,b ≤ 0) (45)

∀〈i, j, g, i′, j′, g′, h〉 such that (τi ∈ τ) ∧ (j ∈ [1, nstagesi]) ∧ (g ∈ [1, nsegi,j ]) ∧ (τi′ ∈ τ) ∧ (j
′ ∈ [1, nstagesi′ ]) ∧ (g

′ ∈ [1, nsegi′,j′ ])∧
(h ∈ [0, H − 1]) ∧ (((i = i

′
) ∧ (j = j

′
) ∧ (g < g

′
)) ∨ (i < i

′
)) : xi,j,g,h + xi′,j′,g′,h ≤ 1 (46)

∀〈i, j, g〉 such that (τi ∈ τ) ∧ (j ∈ [1, nstagesi]) ∧ (g ∈ [1, nsegi,j ]) : cmi,j,g ≤ cui,j (47)

∀〈i, j〉 such that (τi ∈ τ) ∧ (j ∈ [1, nstagesi]) :

nsegi,j∑
g=1

sei,j,g = 1 (48)

∀〈i, j, g〉 such that (τi ∈ τ) ∧ (j ∈ [1, nstagesi]) ∧ (g ∈ [1, nsegi,j ]) : (sei,j,g = 1)⇒ (cmi,j,g ≥ cui,j) (49)

∀〈i′, j′, g′, p′, i′′, j′′, g′′, p′′, h, b〉 such that (〈i′, j′, g′, p′, i′′, j′′, g′′, p′′〉 ∈ sharedframes) ∧ (h ∈ [0, H − 1]) ∧ (b ∈ [0, B − 1]) :

oi′,j′,g′,p′,h,b = oi′′,j′′,g′′,p′′,h,b (50)

∀〈i, j, g〉 such that (τi ∈ τ) ∧ (j ∈ [1, nstagesi]) ∧ (g ∈ [1, nsegi,j ]) : cmi,j,g = Ci,j + s× (

B−1∑
b=0

(coati,j,g,b + Linter × oaoi,j,g,b)) (51)

∀〈i, j, g, b〉 such that (τi ∈ τ) ∧ (j ∈ [1, nstagesi]) ∧ (g ∈ [1, nsegi,j ]) ∧ (b ∈ [0, B − 1]) : bc1i,j,g,b + bc2i,j,g,b + bc3i,j,g,b + bc4i,j,g,b = 1 (52)

∀〈i, j, g, b〉 such that (τi ∈ τ) ∧ (j ∈ [1, nstagesi]) ∧ (g ∈ [1, nsegi,j ]) ∧ (b ∈ [0, B − 1]) : (bc1i,j,g,b = 1)⇒ (mmboi,j,g,b ≤ mbi,j,g,b × LIM1) (53)

∀〈i, j, g, b〉 such that (τi ∈ τ) ∧ (j ∈ [1, nstagesi]) ∧ (g ∈ [1, nsegi,j ]) ∧ (b ∈ [0, B − 1]) : (bc2i,j,g,b = 1)⇒
(mbi,j,g,b × LIM1 ≤ mmboi,j,g,b ≤ mbi,j,g,b × (LIM1 + 1)) (54)

∀〈i, j, g, b〉 such that (τi ∈ τ) ∧ (j ∈ [1, nstagesi]) ∧ (g ∈ [1, nsegi,j ]) ∧ (b ∈ [0, B − 1]) : (bc3i,j,g,b = 1)⇒
(mbi,j,g,b × (LIM1 + 1) ≤ mmboi,j,g,b ≤ mbi,j,g,b × LIM2) (55)

∀〈i, j, g, b〉 such that (τi ∈ τ) ∧ (j ∈ [1, nstagesi]) ∧ (g ∈ [1, nsegi,j ]) ∧ (b ∈ [0, B − 1]) : (bc4i,j,g,b = 1)⇒ (mbi,j,g,b × LIM2 ≤ mmboi,j,g,b) (56)

∀〈i, j, g, b〉 such that (τi ∈ τ) ∧ (j ∈ [1, nstagesi]) ∧ (g ∈ [1, nsegi,j ]) ∧ (b ∈ [0, B − 1]) : (bc1i,j,g,b = 1)⇒
(coati,j,g,b = mmboi,j,g,b × (Lconf + Linter)) (57)

∀〈i, j, g, b〉 such that (τi ∈ τ) ∧ (j ∈ [1, nstagesi]) ∧ (g ∈ [1, nsegi,j ]) ∧ (b ∈ [0, B − 1]) : (bc2i,j,g,b = 1)⇒
(coati,j,g,b = mbi,j,g,b × LIM1× (Lconf + Linter) + (mmboi,j,g,b −mbi,j,g,b × LIM1)× (WL + BL/2 + tWR)× tCK) (58)

∀〈i, j, g, b〉 such that (τi ∈ τ) ∧ (j ∈ [1, nstagesi]) ∧ (g ∈ [1, nsegi,j ]) ∧ (b ∈ [0, B − 1]) : (bc3i,j,g,b = 1)⇒
(coati,j,g,b = mbi,j,g,b × LIM1× (Lconf + Linter) + mbi,j,g,b × (WL + BL/2 + tWR)× tCK+

(mmboi,j,g,b −mbi,j,g,b × (LIM1 + 1))× (WL + BL/2 + tWR + CL)× (1/2)× tCK) (59)

∀〈i, j, g, b〉 such that (τi ∈ τ) ∧ (j ∈ [1, nstagesi]) ∧ (g ∈ [1, nsegi,j ]) ∧ (b ∈ [0, B − 1]) : (bc4i,j,g,b = 1)⇒
(coati,j,g,b = mbi,j,g,b × (LIM1× (Lconf + Linter) + Lconhit(Nre))) (60)

∀〈i, j, g, b〉 such that (τi ∈ τ) ∧ (j ∈ [1, nstagesi]) ∧ (g ∈ [1, nsegi,j ]) ∧ (b ∈ [0, B − 1]) : (bc4i,j,g,b = 0)⇒ (oati,j,g,b = mmboi,j,g,b) (61)

∀〈i, j, g, b〉 such that (τi ∈ τ) ∧ (j ∈ [1, nstagesi]) ∧ (g ∈ [1, nsegi,j ]) ∧ (b ∈ [0, B − 1]) : (bc4i,j,g,b = 1)⇒ (oati,j,g,b = mbi,j,g,b × LIM2) (62)

∀〈i, j, g, b〉 such that (τi ∈ τ) ∧ (j ∈ [1, nstagesi]) ∧ (g ∈ [1, nsegi,j ]) ∧ (b ∈ [0, B − 1]) : (bui,j,g,b = 0)⇒

(
∑

b′∈[0,B−1]∧(b′ 6=b)

mmboi,j,g,b′ ≤ (mbi,j,g,b + oati,j,g,b)× (B − 1)) (63)

∀〈i, j, g, b〉 such that (τi ∈ τ) ∧ (j ∈ [1, nstagesi]) ∧ (g ∈ [1, nsegi,j ]) ∧ (b ∈ [0, B − 1]) : (bui,j,g,b = 1)⇒

(
∑

b′∈[0,B−1]∧(b′ 6=b)

mmboi,j,g,b′ ≥ (mbi,j,g,b + oati,j,g,b)× (B − 1)) (64)

∀〈i, j, g, b〉 such that (τi ∈ τ) ∧ (j ∈ [1, nstagesi]) ∧ (g ∈ [1, nsegi,j ]) ∧ (b ∈ [0, B − 1]) : (bui,j,g,b = 0)⇒

(oaoi,j,g,b = (
∑

b′∈[0,B−1]∧(b′ 6=b)

mmboi,j,g,b′ )) (65)

∀〈i, j, g, b〉 such that (τi ∈ τ) ∧ (j ∈ [1, nstagesi]) ∧ (g ∈ [1, nsegi,j ]) ∧ (b ∈ [0, B − 1]) : (bui,j,g,b = 1)⇒
(oaoi,j,g,b = (mbi,j,g,b + oati,j,g,b)× (B − 1)) (66)

mbi,j,g,b ∈ Z≥0,mmbi,i′,j′,g′,b ∈ Z≥0,mmboi,j,g,b ∈ Z≥0, oi,j,g,p,h,b ∈ {0, 1}, inoh,b ∈ Z≥0, xi,j,g,h ∈ {0, 1}, cmi,j,g ∈ R≥0, sei,j,g ∈ {0, 1},
b1i,j,g,b ∈ {0, 1}, b2i,j,g,b ∈ {0, 1}, b3i,j,g,b ∈ {0, 1}, b4i,j,g,b ∈ {0, 1}, bui,j,g,b ∈ {0, 1}, coati,j,g,b ∈ R≥0, oaoi,j,g,b ∈ Z≥0, oati,j,g,b ∈ Z≥0 (67)

Fig. 5: Expressing increased execution time.8



true and o is the values of the o-variables; otherwise flag is
false and o is undefined.
Theorem 1.

((〈flag, o〉 = fmem(τ,Π, K)) ∧ (flag = true))⇒
τ is gEDF schedulable on a computer with m processors of speed s for

the case that tasks experience memory contention and the memory

mapping is compatible with o

Proof: If the theorem is false then there exists a τ,m, s,K
and an assignment of the number of jobs that each task
generates and an assignment of arrival time to jobs and
execution requirement of segments and a schedule such that
the following two statements are true:

1) (〈flag, o〉 = fmem(τ,Π,K)) ∧ (flag = true)
2) for the jobset generated by τ with the aforementioned

assignment, it holds that gEDF can generate the afore-
mentioned schedule and there is at least one job that
misses its deadline in this schedule.

For this schedule, let t0 denote the earliest time when a
deadline miss occurs. Remove all jobs with arrival time ≥ t0.
There is still a deadline miss at time t0. Let us now reason
as follow: For each job with absolute deadline > t0 such that
it performs execution after time t0, do the following: identify
the latest stage of this job such that there is a segment of
this stage that performs execution after t0. Then reduce the
execution of this segment. Repeated application of this yields
that no job with absolute deadline > t0 performs execution
after time t0. Hence, it holds that: (i) 1) and 2) above are
true, (ii) one or many jobs with absolute deadline at t0 misses
deadlines, (iii) each job with absolute deadline < t0 meets its
deadline, (iv) all jobs have arrival times < t0, and (v) no job
with absolute deadline > t0 performs execution after time t0.

For each job with absolute deadline < t0, we can reason
as follows: Let τi denote the task that generates the job. Let A
denote the arrival time of this job and consider the time interval
[A,A + Di) and consider a task i′ which is not the task that
generated the job of task τi. Because of (iii) and (iv), there can
be at most one job of task i′ such that this job arrives before
A and it has execution that overlaps with [A,A + Di). Also,
because of (iii), there can be at most dDi/Ti′e jobs of task i′
such that this job arrives at or after A and it has execution that
that overlaps with [A,A+Di).

For each job with absolute deadline ≥ t0, we can reason
as follows: Let τi denote the task that generates the job. Let A
denote the arrival time of this job and consider the time interval
[A,A + Di) and consider a task i′ which is not the task that
generated the job of task τi. Because of (iii) and (iv), there can
be at most one job of task i′ such that this job arrives before
A and it has execution that overlaps with [A,A + Di). Also,
because of (v), there can be at most dDi/Ti′e jobs of task i′
such that this job arrives at or after A and it has execution that
that overlaps with [A,A+Di).

Consequently, for each of these cases, there are at most
(dDiT ′i e + 1) × mbi′,j′,g′,b memory accesses on bank b of
jobs of the g′th segment of the j′th stage of task τ ′i that
overlaps with [A,A + Di). This expression is the right-hand
side of the expression of (39). Hence, there are at most
mmbi,i′,j′,g′,b memory accesses of jobs of the g′th segment

of the j′th stage of task τ ′i that overlaps with [A,A + Di).
Since we know the values of mmbi,i′,j′,g′,b, using Fig. 5
yields cmi,j,g . This yields cui,j which provides an upper
bound on the execution requirement. Since cui,j is an upper
bound on execution requirement we can treat the system as if
there was no contention for resources in the memory system
and execution requirements were given by cui,j . Since the
constraints in Fig. 3 are satisfied, all deadlines are met. This
contradicts 2) above. Hence, the theorem is correct.

Note that some of the constraints mentioned are not MILP
— they have binary variables and logical operators. We will
discuss this now. A constraint of the form (x = 1)⇒ (a = b)
can be rewritten as: ((x = 1)⇒ (a ≤ b)) ∧ ((x = 1)⇒ (a ≥
b)). Note that if x is a variable with the domain {0, 1} and
a and b are non-negative real variables and BIG is a constant
selected so that a ≤ BIG and b ≤ BIG, then a constraint
(x = 1)⇒ (a ≤ b) can be rewritten as

a− b+ BIG× x ≤ BIG (68)

Note that in a feasible solution to Fig. 3 and Fig. 5, for the
variables in the constraints (52)-(67), the variable is at most

max
τi∈τ

(
∑
τ′
i
∈τ

((d
Di

T ′i
e+ 1)× (

∑
j∈[1′,nstages

i′ ]

∑
g′∈[1,nseg

i′,j′ ]

∑
p′∈[0,np

i′,j′−1]

MAi′,j′,p′ )))

(69)

Hence, for the constraints (52)-(67), the left-hand side (lhs)
is at most

max
(

2× (B − 1), Lconf + Linter

)
× ((69)) (70)

Also, for each of the other constraints, the lhs is at most
(P + DMAX)×m×max(1, s) +H × B (71)

Applying the rewriting expressed by (68) (and minor variants
of it), with BIG = max((70), (71)), yields that all of our
constraints can be converted to a MILP.

VI. DISCUSSION

Recall (from Section II) that in general, it is possible to
obtain (e.g. using a worst-case execution-time analysis tool)
Ci,j(map) and MAi,j,p(map) but it is very expensive to obtain
Ci,j and MAi,j,p. This can be dealt with by guessing values of
the latter and call the function fmem(τ,Π,K) and then obtain
a new memory mapping and then for this memory mapping,
check whether the guess was valid. Also, note that solving the
MILP produces an abstract memory mapping o. It is abstract
because it does not specify exactly to which memory frame
a page should be mapped; it only specifies to which cache
color and bank color a memory page should be mapped. We
assume a method exists that converts the abstract mapping o
to a mapping map that specifies for each page which frame it
maps to (it is trivial to create it). An algorithm based on these
ideas is shown below:

1) Choose a value of K (for example K = 20)
2) Choose a value of maxiter (for example maxiter = 3)
3) Choose one abstract memory mapping o′
4) for iter := 1 to maxiter do
5) choose a memory mapping map′ that is compatible with the
6) abstract memory mapping o′
7) ∀i, j :
8) obtain Ci,j(map′) and then assign Cguess

i,j := Ci,j(map′)
9) ∀i, j, p :

10) obtain MAi,j,p(map′) then assign MAguess
i,j,p := MAi,j,p(map′)

11) 〈flag, o〉 = fmem(τ,Π,K); in this call, assume that
12) ∀i, j : Ci,j = Cguess

i,j ; ∀i, j, p : MAi,j,p = MAguess
i,j,p

13) if flag then
14) choose a memory mapping map that is compatible with the
15) abstract memory mapping o

9



16) o’ := o
17) if (∀i, j : Ci,j(map) ≤ Cguess

i,j ) and
18) (∀i, j, p : MAi,j,p(map) ≤ MAguess

i,j,p ) then
19) declare SUCCESS
20) end if
21) else
22) Choose one abstract memory mapping o′ that has not been
23) tried before
24) end if
25) end for
26) declare FAILURE

Hence, our solution can be used in practice.

We have implemented a tool based on this theory and
tested it on systems with 4 and 8 processors. With this
experimentation, we find that such systems can be analyzed
and configured and the pessimism is reasonable. See appendix.

VII. CONCLUSIONS

COTS multicore processors are the norm today but their
use for hard real-time systems is challenging because (i) in
order to take full advantage of such platforms for meeting tight
deadlines, parallelization is necessary and (ii) the contention
for shared resources in the memory system makes execution
times hard to predict. In this paper, we have developed a
solution that addresses these issues. Our main idea is to
formulate a MILP that configures the memory mapping and
performs schedulability analysis.
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